

| 6 | 2 | 25 | 53 | 16 | 69 | 86 | 39 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $C$ |  | $\mathbf{M}$ | $\mathrm{I}$ | $\mathbf{N}$ | $\Gamma$ |  | $\mathbf{Y}$ |
| $\begin{aligned} & \text { Carbou } \\ & 12.0107 \end{aligned}$ | $\underset{4.002602}{\text { Helinum }}$ | Manganese <br> 54.938045 | $\begin{gathered} \text { Iodine } \\ 126.90447 \end{gathered}$ | $\begin{aligned} & \text { Sulfur } \\ & 32.065 \end{aligned}$ | Thulium <br> 168.93421 | Radou [222] | Ytrium <br> 88.90585 |



## Mrs. Cooks

(Due at the end of class on 10/9
$\qquad$

## TARGET CHECK

| Target |  | Red- l'm Lost | Yellow - I get it MOST of the time | Green - I get this ALL of the time |
| :---: | :---: | :---: | :---: | :---: |
| 8.5A | I can identify the parts of the atom, their charges, and their location within the atom. |  |  |  |
| 8.5A | I can determine the number of: <br> - Protons |  |  |  |
|  | - Neutrons |  |  |  |
|  | - Eletrons |  |  |  |
|  | - Valence Electrons |  |  |  |
|  | - Energy Levels in an element. |  |  |  |
| 8.5B | I can identify which subatomic particle is responsible for an element's identity and the role that valence electrons plays in an element's reactivity. |  |  |  |
| 8.5C | I can use and interpret the Periodic Table to identify characteristics including valence electrons, energy levels, charges, metals, nonmetals, and metalloids. |  |  |  |
| 8.5C | I can identify groups and periods on the Periodic Table. |  |  |  |
| 8.5C | I can use an element"s properties to explain it"s location on the Periodic Table |  |  |  |
| 8.5D | I can identify the following in a chemical formula |  |  |  |
|  | - coefficient |  |  |  |
|  | - subscript |  |  |  |
|  | - reactant |  |  |  |
|  | - product |  |  |  |
| 8.5D | I can analyze a chemical formula to determine the number of atoms of each element. |  |  |  |
| 8.5E | I can recognize signs that a chemical reaction is taking place. |  |  |  |
| 8.5F | I can use a chemical equation to prove the law of conservation of mass. |  |  |  |
| 8.5F | I can recognize whether or not an equation is balanced or unbalanced |  |  |  |

## Deriodic Table

The periodic table is organized like a big grid. Each element is placed in a specific location because of its atomic structure. As with any grid, the periodic table has rows (left to right) and columns (up and down). Each row and column has specific characteristics. For example, beryllium (Be) and magnesium ( Mg ) are found in column two and share certain similarities while potassium ( $K$ ) and calcium (Ca) from row four share different characteristics.

Procedure:

1. Complete the chart below using a periodic table

| Element Name | Symbol | Atomic Number | $\frac{\text { Atomic Mass }}{\text { (ROUNDED) }}$ |
| :---: | :---: | :---: | :---: |
| Gold |  |  |  |
|  | Ag |  |  |
| Zu |  |  |  |
| Sodium |  |  |  |
|  | Mn |  |  |
| Magnesium |  |  |  |
| Mercury | Fe |  |  |
|  |  |  |  |
| Lead | K |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Deriodic Table Notes

- Arrangement of elements
- Arranged by
- Periods
- Same number of $\qquad$
 - Groups
- Same number of $\qquad$
- $\overline{\text { simiar }}$ Total
- Similar $\qquad$
- Hydrogen and Helium
- Special Elements
- Elements are Grouped By Type

- Elements
- Symbol
- Not always first letter
- Sometimes Latin Name

> - Ex. Gold = Au = Aurum

- Atomic Number
- \# of $\qquad$
- \# of $\qquad$
- Atomic Mass
- \# of Protons $\qquad$ the \# of Neutrons
- Element Practice
- Fill in the blanks below.
- Phosphorus
- Symbol: $\qquad$
- Atomic Number: $\qquad$
- Atomic Mass: $\qquad$
- Protons: $\qquad$
- Neutrons: $\qquad$
- Electrons: $\qquad$



## Protons, Neutrons, Electrons Worksheet

| 8 <br> O |
| :---: |
| 15.999 |

Atomic \# =
Atomic Mass =
\# of Protons =
$\#$ of Neutrons =
$\#$ of Electrons =

| 14 |
| :---: |
| Silicon |
| 28.086 |

Atomic \#=
Atomic Mass =
\# of Protons =
\# of Neutrons =
\# of Electrons =

| 16 |
| :---: |
| S |
| 32.06 |

Atomic \# =
Atomic Mass = $\qquad$
\# of Protons =
\# of Neutrons = $\qquad$
\# of Electrons = $\qquad$

Atomic \# =
Atomic Mass =
\# of Protons = $\qquad$
\# of Neutrons = $\qquad$
\# of Electrons = $\qquad$

| 5 |
| :---: |
| B |
| 10.81 |

## Atomic \# = <br> $\qquad$

Atomic Mass $=$
\# of Protons = $\qquad$
\# of Neutrons =
\# of Electrons $=$

| 53 |
| :---: |
| $\overline{\text { Iodine }}$ |
| 126.905 |

Atomic \# = $\qquad$
Atomic Mass $=$ $\qquad$ \# of Protons =
\# of Neutrons =
\# of Electrons = $\qquad$

Atomic \# = $\qquad$
Atomic Mass $=$ $\qquad$ \# of Protons = $\qquad$
\# of Neutrons = $\qquad$
\# of Electrons = $\qquad$
35
Bromine 79.904

## Atomic \# =

$\qquad$
Atomic Mass $=$ $\qquad$
\# of Protons = $\qquad$
\# of Neutrons =
\# of Electrons = $\qquad$

## Counfing Afoms Nofes

- Writing Compounds
- Coefficient
- Number $\qquad$ the element/compound
- Tells you how many of the element/compound there are
- Subscript

- Number $\qquad$ element
- Tells you how many atoms of that element there are
- Counting Atoms in a Compound Practice
$-\mathrm{CaCO}_{3}$
- $\mathrm{Ca}=$
- $\mathrm{C}=$
- $\mathrm{O}=$
$-\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$
- $\mathrm{C}=$
- $\mathrm{H}=$
- $\mathrm{O}=$
- $\mathrm{Mg}(\mathrm{OH})_{2}$
- $\mathrm{Mg}=$
- $\mathrm{O}=$
- $\mathrm{H}=$
$-2 \mathrm{FeS}_{2}$
- $\mathrm{Fe}=$
- $\mathrm{S}=$
$-\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}=$
- $\mathrm{H}=$
- $\mathrm{O}=$
- $2 \mathrm{C}_{7} \mathrm{H}_{5}\left(\mathrm{NO}_{2}\right)_{3}$
- $\mathrm{C}=$
- $\mathrm{H}=$
- $\mathrm{N}=$
- $\mathrm{O}=$


## Counfing Afoms Worksheef

List the number of atoms of each element within the compound below.

| $\sum_{\text {coefficient }}^{2 \mathrm{CO}_{2}} \underbrace{}_{\text {subscript }}$ | $\begin{aligned} & C=2 \\ & O=4 \end{aligned}$ |
| :---: | :---: |
| Compound | Atoms in Compound |
| NaCl | $\begin{aligned} & \mathrm{Na}=1 \\ & \mathrm{Cl}=1 \end{aligned}$ |
| $\mathrm{BaCl}_{2}$ | $\begin{aligned} & \mathrm{Ba}= \\ & \mathrm{Cl}= \end{aligned}$ |
| LiBr |  |
| $\mathrm{FeS}_{2}$ |  |
| $\mathrm{BaSO}_{4}$ | $\begin{array}{ll} \mathrm{Ba}= & \mathrm{O}= \\ \mathrm{S}= & \end{array}$ |
| $\mathrm{CaSO}_{4}$ |  |
| $3 \mathrm{CaCO}_{2}$ |  |
| $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ |  |
| $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ |  |
| $\mathrm{Mg}(\mathrm{OH})_{2}$ |  |
| $\mathrm{C}_{7} \mathrm{H}_{5}\left(\mathrm{NO}_{2}\right)_{3}$ |  |
| $2 \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ |  |
| 2 HBr |  |
| $3 \mathrm{H}_{2} \mathrm{O}$ |  |
| $2 \mathrm{C}_{2} \mathrm{O}_{2}$ |  |

## Bohr Model Notes

- Used to show arrangement of electrons
- Electrons are placed on the $\qquad$ energy level first
- Once full, extra electrons are placed in the next shells
- Maximum number of electrons on shells
$-1^{\text {st }}=$ $\qquad$ electrons
$-\quad 2^{\text {nd }}-$ $\qquad$ electrons
$-3^{\text {rd }}-$ $\qquad$ electrons
- Periodic Table Tips
- The periodic table can help you quickly complete the Bohr model
- The number of periods shows you the number of $\qquad$
- The number of groups shows you the number of $\qquad$ in the outer shell
- Bohr Model Practice
- Fill in the blanks below.
- Phosphorus
- Symbol: $\qquad$
- Atomic Number: $\qquad$
- Atomic Mass: $\qquad$

- Protons: $\qquad$
- Neutrons: $\qquad$
- Electrons: $\qquad$


## Bohr Model Worksheet

Use the description sheet and the periodic table to help you complete the following Bohr models.

1. How many electrons can each shell hold?
a. $1^{\text {st }}=$ $\qquad$
b. $\quad 2^{\text {nd }}=$ $\qquad$
c. $3^{\text {rd }}=$

| Element | Atomic <br> $\#$ | Atomic <br> Mass | Protons | Neutrons | Electrons | Bohr Model |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Carbon | 6 | 12 | 6 | 6 |  |  |
| Hydrogen | 1 | 1 |  |  |  |  |
| Lithium | 3 |  |  |  |  |  |
| Magnesium | 12 | 24 |  |  |  |  |
|  |  |  |  |  |  |  |

## Lewis Notes

- Lewis Dot Diagrams
- Illustrates the number of valence electrons
- Valence electrons = Number of electrons in $\qquad$ shell
- Placed around the symbol of the element
- Helps us determine how compounds are formed / how elements bond
- Periodic Table Tips
- Same with the Bohr Model
- You don't need the number of shells / periods
- The group \# gives you the number of $\qquad$ electrons
- Drawing Valence Electrons
- How many valence electrons does Fluorine have?
- Start at 12:00 with your first dot


## F

- Add dots at 3:00, 6:00, and 9:00 moving clockwise until you reach the correct number of valence electrons.
F
F
F
- You need one dot at each location before you start adding your second dots
F
F
F
- Lewis Dot Diagram Practice
- Draw the Lewis Dot Diagram for Phosphorus
- Phosphorus
- Symbol: $\qquad$
- Atomic Number: $\qquad$
- Atomic Mass: $\qquad$
- Protons: $\qquad$
- Neutrons: $\qquad$
- Electrons: $\qquad$
- Valance Electrons: $\qquad$


## Lewis Dot Diagram Worksheet

Use the Bohr models to determine the number of valance electrons. Once you have found the number of valance electrons, place them around the elements symbol.

| Element | Atomic \# | Atomic <br> Mass | Protons | Neutrons | Electrons | Lewis Dot |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Carbon | 6 | 12 | 6 | 6 | 6 | $\cdot \mathbf{C} \cdot$ |
| Lithium | 3 | 7 | 3 |  | Li |  |
| Magnesium | 12 | 24 | 12 | 12 |  | M dots around the symbol |


| Element | Atomic \# | Atomic Mass | Protons | Neutrons | Electrons | Lewis Dot |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Helium | 2 | 4 |  | 2 | 2 | He |
| Potassium | 19 |  | 19 |  | 19 | K |
| Aluminum | 13 |  |  |  |  | Al |
| Beryellium | 4 | 9 | 4 |  | 4 | Be |
| Silicon | 14 | 28 |  | 14 | 14 | Si |
| lodine | 52 |  |  |  |  | I |
| Chlorine | 17 |  |  |  | 17 | Cl |
| Neon | 10 | 20 |  |  |  | Ne |
| 12 |  |  |  |  |  |  |

## Why do Elements Bond?

| Element | \# of Valence <br> Electrons | Type of <br> Element | What <br> happens to <br> the electrons | Number of <br> Electrons Gained <br> or Lost |
| :---: | :---: | :---: | :---: | :---: |
| Lithium | 1 | Metal | Lose | 1 electron |
| Chlorine |  |  |  |  |
| Sodium |  |  |  |  |
| Carbon |  |  |  |  |
| Calcium |  |  |  |  |
| Beryllium |  |  |  |  |
| Boron |  |  |  |  |
| Nitrogen |  |  |  |  |
| Oxygen |  |  |  |  |
| Fluorine |  |  |  |  |
| Hydrogen |  |  |  |  |
| Magnesium |  |  |  |  |
| Phosphorous |  |  |  |  |
| Iodine |  |  |  |  |
| Lead |  |  |  |  |
| Sulfur |  |  |  |  |
| Aluminum |  |  |  |  |
| Seosium |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| Silicon |  |  |  |  |

## Balanced or Not

Directions: List the number of elements and atoms of each element in the following equations.
6. $2 \mathrm{HgO} \rightarrow 2 \mathrm{Hg}+\mathrm{O}_{2}$

| Reactants |  | Products |
| :---: | :---: | :---: |
| Element | Atoms | Atoms |
|  |  |  |
|  |  |  |

Is this equation balanced?
7. $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}$

| Reactants |  | Products |
| :---: | :---: | :---: |
| Element | Atoms | Atoms |
|  |  |  |
|  |  |  |

Is this equation balanced?
8. $\mathrm{C}_{10} \mathrm{H}_{16}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}+\mathrm{HCl}$

| Reactants |  | Products |
| :--- | :--- | :---: |
| Element | Atoms | Atoms |
|  |  |  |
|  |  |  |
|  |  |  |

Is this equation balanced?
9. $\mathrm{Fe}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$

| Reactants |  | Products |
| :---: | :---: | :---: |
| Element | Atoms | Atoms |
|  |  |  |
|  |  |  |

Is this equation balanced?
10. $\mathrm{P}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{P}_{2} \mathrm{O}_{5}$

| Reactants |  | Products |
| :---: | :---: | :---: |
| Element | Atoms | Atoms |
|  |  |  |
|  |  |  |

Is this equation balanced?
11. $8 \mathrm{Fe}+\mathrm{S}_{8} \rightarrow 8 \mathrm{FeS}$

| Reactants |  | Products |
| :---: | :---: | :---: |
| Element | Atoms | Atoms |
|  |  |  |
|  |  |  |

Is this equation balanced?

## Balance This

Directions: Determine if the following equations are balanced, If the equation is not balanced, balance it. Remember, you cannot change a subscript to balance the equation, nor can you add in new compounds.
15. $\mathrm{Al}+\mathrm{FeO} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Fe}$
16. $3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$
17. $\mathrm{S}_{8}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}$
18. $\mathrm{N}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}$
19. $2 \mathrm{~N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}$
20. $\mathrm{Al}+\mathrm{O}_{2} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}$
21. $2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
22. $\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
23. $\mathrm{CO}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}$
24. $\mathrm{Al}+\mathrm{CuO} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Cu}$
25. $\mathrm{I}_{2}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$

## Physical versus Chemical Properties Activity

Classify the following properties as either chemical or physical by putting a check in the appropriate column.

|  | Statement | Physical <br> Property | Chemical <br> Property |
| :--- | :--- | :--- | :--- |
| 1. | One can use their five senses to determine the properties of a substance. |  |  |
| 2. | Properties usually describe how a substance reacts |  |  |
| 3. | Oxygen is odorless and colorless |  |  |
| 4. | The density of water is 1.0 gram per cubic centimeter |  |  |
| 5. | The tree is 8 meters high |  |  |
| 6. | Alka-Seltzer tablets react with water to produce gas |  |  |
| 7. | Iron reacts with oxygen and forms rust |  |  |
| 8. | The boiling point of water is 100 degrees $C$ |  |  |
| 9. | Baking soda reacts with vinegar |  |  |
| 10. | Oxygen is a gas |  |  |

## Physical versus Chemical Reactions Activity

Classify the following properties as either chemical or physical by putting a check in the appropriate column.

|  | Statement | Physical <br> Change | Chemical <br> Change |
| :--- | :--- | :--- | :--- |
| 1. | Change is easily reversible |  |  |
| 2. | A change that does produce a new substance. |  |  |
| 3. | Crushing a can |  |  |
| 4. | Rusting of Iron |  |  |
| 5. | Burning a block of wood |  |  |
| 6. | Mixing sand and water |  |  |
| 7. | Breaking a glass |  |  |
| 8. | Mixing baking soda and vinegar to produce carbon dioxide gas |  |  |
| 9. | Dissolving salt and water |  |  |
| 10. | Baking a cake |  |  |
| 11. | Chopping wood |  |  |
| 12. | Mixing red and green marbles |  |  |
| 13. | A solid is crushed to a powder |  |  |
| 14. | A marshmallow is toasted over a campfire |  |  |
| 15. | An ice cube is place in the sun. Later there is a puddle of water. Later still <br> the puddle is gone. |  |  |

## Changes in Everyday Liffe

Physical and chemical reactions occur all around you every day. Read the story below and underline the physical and chemical reactions you see within it. Use your blue pen to underline physical reactions and your red pen to underline chemical reactions.

## Just One of Those Days

Aaahhh. A brand new day. You go into the kitchen and open the fridge and pour a glass of milk. Before you even drink it you can tell from the smell that the milk has soured. You make a glass of ice water instead. Suddenly, you hear your cat screech. You run to help her and see she has stepped on a rusty tack (you know from science class that it rusted due to oxidation).
 You run to call the emergency traveling vet to come to your house. As you are walking back to the kitchen, you notice that some of your plants are dying and beginning to decay and that some saltwater has evaporated out of your fish tank. You make a mental note to take care of both after school.


You go back to get your ice water but you find that the ice has melted. You are so thirsty you don't care and drink it anyway. You suddenly realize how hungry you are and take an apple from the counter and bite into it. Yum. Then you hear glass breaking. (What kind of crazy day is this?!) You run to see what has happened and find that the traveling vet accidentally broke a window. But he promises to pay for the damage before he takes your cat away to attend to her injury.

What a day, and it's only just begun. You go back to the apple, but it has turned brown. You decide to make some eggs and toast instead. You first whip the eggs with a fork and then cook them. You pop a piece a bread in the toaster, which a few minutes later turns nice and brown. You melt some butter on the toast and add some jelly.

You think about dyeing your hair purple but then remember how your parents reacted when your sister did that. So instead you just decide to finish breakfast and catch the bus, hoping the crazy part of your day has ended.

